Nuprl Lemma : ext-finite-nat-seq_wf
∀[f:finite-nat-seq()]. ∀[x:ℕ].  (ext-finite-nat-seq(f;x) ∈ ℕ ⟶ ℕ)
Proof
Definitions occuring in Statement : 
ext-finite-nat-seq: ext-finite-nat-seq(f;x), 
finite-nat-seq: finite-nat-seq(), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ext-finite-nat-seq: ext-finite-nat-seq(f;x), 
finite-nat-seq: finite-nat-seq(), 
nat: ℕ, 
less_than: a < b, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
true: True, 
squash: ↓T, 
top: Top, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k
Lemmas referenced : 
top_wf, 
less_than_wf, 
int_seg_wf, 
lelt_wf, 
nat_wf, 
finite-nat-seq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
lessCases, 
independent_pairFormation, 
isectElimination, 
baseClosed, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
axiomSqEquality, 
extract_by_obid, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
imageElimination, 
independent_functionElimination, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
axiomEquality
Latex:
\mforall{}[f:finite-nat-seq()].  \mforall{}[x:\mBbbN{}].    (ext-finite-nat-seq(f;x)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{})
Date html generated:
2019_06_20-PM-03_04_21
Last ObjectModification:
2018_08_20-PM-09_41_02
Theory : continuity
Home
Index