Nuprl Lemma : ext-finite-nat-seq_wf

[f:finite-nat-seq()]. ∀[x:ℕ].  (ext-finite-nat-seq(f;x) ∈ ℕ ⟶ ℕ)


Proof




Definitions occuring in Statement :  ext-finite-nat-seq: ext-finite-nat-seq(f;x) finite-nat-seq: finite-nat-seq() nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-finite-nat-seq: ext-finite-nat-seq(f;x) finite-nat-seq: finite-nat-seq() nat: less_than: a < b and: P ∧ Q less_than': less_than'(a;b) true: True squash: T top: Top not: ¬A implies:  Q false: False prop: int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  top_wf less_than_wf int_seg_wf lelt_wf nat_wf finite-nat-seq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin lambdaEquality setElimination rename because_Cache hypothesis hypothesisEquality lessCases independent_pairFormation isectElimination baseClosed natural_numberEquality equalityTransitivity equalitySymmetry imageMemberEquality axiomSqEquality extract_by_obid isect_memberEquality voidElimination voidEquality lambdaFormation imageElimination independent_functionElimination applyEquality functionExtensionality dependent_set_memberEquality axiomEquality

Latex:
\mforall{}[f:finite-nat-seq()].  \mforall{}[x:\mBbbN{}].    (ext-finite-nat-seq(f;x)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{})



Date html generated: 2019_06_20-PM-03_04_21
Last ObjectModification: 2018_08_20-PM-09_41_02

Theory : continuity


Home Index