Nuprl Lemma : init-seg-nat-seq-append-implies-left
∀a,b,s:finite-nat-seq(). ((↑init-seg-nat-seq(a**b;s))
⇒ (↑init-seg-nat-seq(a;s)))
Proof
Definitions occuring in Statement :
init-seg-nat-seq: init-seg-nat-seq(f;g)
,
append-finite-nat-seq: f**g
,
finite-nat-seq: finite-nat-seq()
,
assert: ↑b
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
uall: ∀[x:A]. B[x]
,
exists: ∃x:A. B[x]
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
assert-init-seg-nat-seq,
append-finite-nat-seq_wf,
equal_wf,
squash_wf,
true_wf,
finite-nat-seq_wf,
append-finite-nat-seq-assoc,
iff_weakening_equal,
exists_wf,
assert_wf,
init-seg-nat-seq_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
hypothesis,
productElimination,
independent_functionElimination,
isectElimination,
because_Cache,
dependent_pairFormation,
applyEquality,
lambdaEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
universeEquality,
natural_numberEquality,
sqequalRule,
imageMemberEquality,
baseClosed,
independent_isectElimination,
hyp_replacement,
applyLambdaEquality
Latex:
\mforall{}a,b,s:finite-nat-seq(). ((\muparrow{}init-seg-nat-seq(a**b;s)) {}\mRightarrow{} (\muparrow{}init-seg-nat-seq(a;s)))
Date html generated:
2017_04_20-AM-07_30_09
Last ObjectModification:
2017_02_27-PM-06_00_43
Theory : continuity
Home
Index