Nuprl Lemma : assert-init-seg-nat-seq

f,g:finite-nat-seq().  (↑init-seg-nat-seq(f;g) ⇐⇒ ∃h:finite-nat-seq(). (g f**h ∈ finite-nat-seq()))


Proof




Definitions occuring in Statement :  init-seg-nat-seq: init-seg-nat-seq(f;g) append-finite-nat-seq: f**g finite-nat-seq: finite-nat-seq() assert: b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] init-seg-nat-seq: init-seg-nat-seq(f;g) finite-nat-seq: finite-nat-seq() member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False iff: ⇐⇒ Q ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k mk-finite-nat-seq: f^(n) append-finite-nat-seq: f**g less_than: a < b true: True squash: T pi2: snd(t) pi1: fst(t)
Lemmas referenced :  ble_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot finite-nat-seq_wf assert-ble subtract_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf istype-le decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma set_subtype_base le_wf int_subtype_base assert-equal-upto-finite-nat-seq subtype_rel_function int_seg_wf nat_wf int_seg_subtype istype-false subtype_rel_self istype-assert equal-upto-finite-nat-seq_wf append-finite-nat-seq_wf mk-finite-nat-seq_wf add-member-int_seg2 decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than lt_int_wf assert_of_lt_int istype-top int_seg_properties lelt_wf iff_weakening_uiff assert_wf less_than_wf subtract-add-cancel equal_wf squash_wf true_wf istype-universe iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  sqequalHypSubstitution productElimination thin rename sqequalRule cut introduction extract_by_obid isectElimination setElimination hypothesisEquality hypothesis Error :inhabitedIsType,  unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination Error :dependent_pairFormation_alt,  Error :equalityIsType1,  promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache voidElimination Error :universeIsType,  Error :dependent_set_memberEquality_alt,  natural_numberEquality approximateComputation Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  independent_pairFormation Error :equalityIstype,  applyEquality intEquality closedConclusion baseApply baseClosed sqequalBase addEquality applyLambdaEquality Error :productIsType,  Error :dependent_pairEquality_alt,  Error :functionIsType,  Error :functionExtensionality_alt,  lessCases Error :isect_memberFormation_alt,  axiomSqEquality Error :isectIsTypeImplies,  imageMemberEquality imageElimination Error :equalityIsType4,  universeEquality functionEquality

Latex:
\mforall{}f,g:finite-nat-seq().    (\muparrow{}init-seg-nat-seq(f;g)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}h:finite-nat-seq().  (g  =  f**h))



Date html generated: 2019_06_20-PM-03_03_25
Last ObjectModification: 2018_11_23-PM-03_14_44

Theory : continuity


Home Index