Nuprl Lemma : init-seg-nat-seq-append-implies-right
∀a,b,s:finite-nat-seq().  ((↑init-seg-nat-seq(s;a)) 
⇒ (↑init-seg-nat-seq(s;a**b)))
Proof
Definitions occuring in Statement : 
init-seg-nat-seq: init-seg-nat-seq(f;g)
, 
append-finite-nat-seq: f**g
, 
finite-nat-seq: finite-nat-seq()
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
assert-init-seg-nat-seq, 
append-finite-nat-seq_wf, 
equal_wf, 
squash_wf, 
true_wf, 
finite-nat-seq_wf, 
append-finite-nat-seq-assoc, 
iff_weakening_equal, 
exists_wf, 
assert_wf, 
init-seg-nat-seq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
productElimination, 
independent_functionElimination, 
because_Cache, 
dependent_pairFormation, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}a,b,s:finite-nat-seq().    ((\muparrow{}init-seg-nat-seq(s;a))  {}\mRightarrow{}  (\muparrow{}init-seg-nat-seq(s;a**b)))
Date html generated:
2017_04_20-AM-07_30_13
Last ObjectModification:
2017_02_27-PM-06_00_40
Theory : continuity
Home
Index