Nuprl Lemma : notAC20

T:Type
  (⇃T
   (∀P:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T ⟶ ℙ
          ((∀n:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃∃m:T. (P m))  ⇃∃f:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T. ∀n:(ℕ ⟶ ℕ) ⟶ ℕ(P (f n))))))


Proof




Definitions occuring in Statement :  qsquash: T nat: prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] choice-principle: ChoicePrinciple(T) iff: ⇐⇒ Q and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a rev_implies:  Q qsquash: T true: True cand: c∧ B quotient: x,y:A//B[x; y] squash: T guard: {T}
Lemmas referenced :  squash_wf member_wf equal-wf-base quotient-member-eq prop-truncation-quot equiv_rel_true true_wf quotient_wf not-choice-baire-to-nat exists_wf qsquash_wf nat_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin because_Cache hypothesis sqequalHypSubstitution independent_functionElimination voidElimination instantiate lemma_by_obid isectElimination functionEquality applyEquality lambdaEquality cumulativity hypothesisEquality universeEquality sqequalRule functionExtensionality independent_pairFormation independent_isectElimination dependent_functionElimination rename introduction promote_hyp equalityTransitivity equalitySymmetry natural_numberEquality pointwiseFunctionality pertypeElimination productElimination productEquality imageElimination imageMemberEquality baseClosed dependent_pairFormation

Latex:
\mforall{}T:Type
    (\00D9T
    {}\mRightarrow{}  (\mneg{}(\mforall{}P:((\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
                    ((\mforall{}n:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \00D9\mexists{}m:T.  (P  n  m))
                    {}\mRightarrow{}  \00D9\mexists{}f:((\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  T.  \mforall{}n:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  (P  n  (f  n))))))



Date html generated: 2016_05_14-PM-09_42_52
Last ObjectModification: 2016_04_05-PM-05_12_24

Theory : continuity


Home Index