Nuprl Lemma : notAC20
∀T:Type
(⇃T
⇒ (¬(∀P:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T ⟶ ℙ
((∀n:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃∃m:T. (P n m))
⇒ ⇃∃f:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T. ∀n:(ℕ ⟶ ℕ) ⟶ ℕ. (P n (f n))))))
Proof
Definitions occuring in Statement :
qsquash: ⇃T
,
nat: ℕ
,
prop: ℙ
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
not: ¬A
,
false: False
,
member: t ∈ T
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
exists: ∃x:A. B[x]
,
choice-principle: ChoicePrinciple(T)
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uimplies: b supposing a
,
rev_implies: P
⇐ Q
,
qsquash: ⇃T
,
true: True
,
cand: A c∧ B
,
quotient: x,y:A//B[x; y]
,
squash: ↓T
,
guard: {T}
Lemmas referenced :
squash_wf,
member_wf,
equal-wf-base,
quotient-member-eq,
prop-truncation-quot,
equiv_rel_true,
true_wf,
quotient_wf,
not-choice-baire-to-nat,
exists_wf,
qsquash_wf,
nat_wf,
all_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
thin,
because_Cache,
hypothesis,
sqequalHypSubstitution,
independent_functionElimination,
voidElimination,
instantiate,
lemma_by_obid,
isectElimination,
functionEquality,
applyEquality,
lambdaEquality,
cumulativity,
hypothesisEquality,
universeEquality,
sqequalRule,
functionExtensionality,
independent_pairFormation,
independent_isectElimination,
dependent_functionElimination,
rename,
introduction,
promote_hyp,
equalityTransitivity,
equalitySymmetry,
natural_numberEquality,
pointwiseFunctionality,
pertypeElimination,
productElimination,
productEquality,
imageElimination,
imageMemberEquality,
baseClosed,
dependent_pairFormation
Latex:
\mforall{}T:Type
(\00D9T
{}\mRightarrow{} (\mneg{}(\mforall{}P:((\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
((\mforall{}n:(\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}. \00D9\mexists{}m:T. (P n m))
{}\mRightarrow{} \00D9\mexists{}f:((\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} T. \mforall{}n:(\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}. (P n (f n))))))
Date html generated:
2016_05_14-PM-09_42_52
Last ObjectModification:
2016_04_05-PM-05_12_24
Theory : continuity
Home
Index