Nuprl Lemma : notAC20
∀T:Type
  (⇃T
  
⇒ (¬(∀P:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T ⟶ ℙ
          ((∀n:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃∃m:T. (P n m)) 
⇒ ⇃∃f:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T. ∀n:(ℕ ⟶ ℕ) ⟶ ℕ. (P n (f n))))))
Proof
Definitions occuring in Statement : 
qsquash: ⇃T
, 
nat: ℕ
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
choice-principle: ChoicePrinciple(T)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
qsquash: ⇃T
, 
true: True
, 
cand: A c∧ B
, 
quotient: x,y:A//B[x; y]
, 
squash: ↓T
, 
guard: {T}
Lemmas referenced : 
squash_wf, 
member_wf, 
equal-wf-base, 
quotient-member-eq, 
prop-truncation-quot, 
equiv_rel_true, 
true_wf, 
quotient_wf, 
not-choice-baire-to-nat, 
exists_wf, 
qsquash_wf, 
nat_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
because_Cache, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
instantiate, 
lemma_by_obid, 
isectElimination, 
functionEquality, 
applyEquality, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
sqequalRule, 
functionExtensionality, 
independent_pairFormation, 
independent_isectElimination, 
dependent_functionElimination, 
rename, 
introduction, 
promote_hyp, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
productEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation
Latex:
\mforall{}T:Type
    (\00D9T
    {}\mRightarrow{}  (\mneg{}(\mforall{}P:((\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
                    ((\mforall{}n:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \00D9\mexists{}m:T.  (P  n  m))
                    {}\mRightarrow{}  \00D9\mexists{}f:((\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  T.  \mforall{}n:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  (P  n  (f  n))))))
Date html generated:
2016_05_14-PM-09_42_52
Last ObjectModification:
2016_04_05-PM-05_12_24
Theory : continuity
Home
Index