Nuprl Lemma : strong-continuity2-no-inner-squash-cantor

F:(ℕ ⟶ ℕ2) ⟶ ℕ
  ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ2) ⟶ (ℕ?)
     ∀f:ℕ ⟶ ℕ2. ((∃n:ℕ((M f) (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (ℕ?) supposing ↑isl(M f))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: assert: b isl: isl(x) uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q true: True unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  true: True squash: T less_than: a < b lelt: i ≤ j < k int_seg: {i..j-} prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B cand: c∧ B and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] strong-continuity2: strong-continuity2(T;F) all: x:A. B[x]
Lemmas referenced :  lelt_wf nat_wf false_wf int_seg_subtype_nat int_seg_wf strong-continuity2-half-squash
Rules used in proof :  baseClosed imageMemberEquality dependent_set_memberEquality functionEquality hypothesisEquality dependent_functionElimination independent_pairFormation sqequalRule independent_isectElimination hypothesis natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{}2)  {}\mrightarrow{}  \mBbbN{}
    \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}2)  {}\mrightarrow{}  (\mBbbN{}?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}2
              ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))



Date html generated: 2017_09_29-PM-06_06_50
Last ObjectModification: 2017_09_04-AM-10_18_03

Theory : continuity


Home Index