Nuprl Lemma : weak-Markov-principle

a,b:ℕ ⟶ ℕ.
  ((∀c:ℕ ⟶ ℕ((¬¬(∃n:ℕ((a n) (c n) ∈ ℤ)))) ∨ (¬¬(∃n:ℕ((b n) (c n) ∈ ℤ))))))
   (∃n:ℕ((a n) (b n) ∈ ℤ))))


Proof




Definitions occuring in Statement :  nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q uimplies: supposing a squash: T exists: x:A. B[x] true: True so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] guard: {T} uall: [x:A]. B[x] prop: false: False not: ¬A or: P ∨ Q implies:  Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  iff_weakening_equal true_wf squash_wf exists_wf or_wf all_wf not_wf nat_wf equal_wf weak-Markov-principle-alt
Rules used in proof :  independent_isectElimination baseClosed imageMemberEquality universeEquality equalitySymmetry equalityTransitivity imageElimination productElimination natural_numberEquality intEquality lambdaEquality because_Cache inrFormation sqequalRule applyEquality functionExtensionality functionEquality isectElimination voidElimination inlFormation unionElimination independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}a,b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.
    ((\mforall{}c:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((\mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  (\mneg{}((a  n)  =  (c  n)))))  \mvee{}  (\mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  (\mneg{}((b  n)  =  (c  n)))))))
    {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  (\mneg{}((a  n)  =  (b  n)))))



Date html generated: 2017_09_29-PM-06_06_46
Last ObjectModification: 2017_08_30-PM-00_28_08

Theory : continuity


Home Index