Nuprl Lemma : member-values-for-distinct2

[A,V:Type].  ∀eq:EqDecider(A). ∀L:(A × V) List. ∀v:V.  ((v ∈ values-for-distinct(eq;L))  (∃a:A. (<a, v> ∈ L)))


Proof




Definitions occuring in Statement :  values-for-distinct: values-for-distinct(eq;L) l_member: (x ∈ l) list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q pair: <a, b> product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uimplies: supposing a prop: so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T values-for-distinct: values-for-distinct(eq;L) implies:  Q all: x:A. B[x] uall: [x:A]. B[x] rev_implies:  Q iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] isl: isl(x) sq_stable: SqStable(P) squash: T
Lemmas referenced :  istype-universe deq_wf list_wf values-for-distinct_wf apply-alist_wf unit_wf2 outl_wf list-subtype pi1_wf map_wf remove-repeats_wf l_member_wf member_map member-remove-repeats isl-apply-alist sq_stable_from_decidable assert_wf btrue_wf bfalse_wf decidable__assert
Rules used in proof :  universeEquality instantiate setIsType independent_isectElimination because_Cache rename setElimination universeIsType dependent_functionElimination productIsType hypothesis inhabitedIsType sqequalRule lambdaEquality_alt productEquality hypothesisEquality setEquality thin isectElimination extract_by_obid introduction cut sqequalHypSubstitution lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination productElimination dependent_pairFormation_alt hyp_replacement equalitySymmetry applyLambdaEquality independent_pairEquality unionElimination equalityIstype equalityTransitivity imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[A,V:Type].
    \mforall{}eq:EqDecider(A).  \mforall{}L:(A  \mtimes{}  V)  List.  \mforall{}v:V.
        ((v  \mmember{}  values-for-distinct(eq;L))  {}\mRightarrow{}  (\mexists{}a:A.  (<a,  v>  \mmember{}  L)))



Date html generated: 2019_10_15-AM-10_24_20
Last ObjectModification: 2019_08_05-PM-02_03_45

Theory : decidable!equality


Home Index