Nuprl Lemma : atom-deq-aux
∀[a,b:Atom].  uiff(a = b ∈ Atom;↑a =a b)
Proof
Definitions occuring in Statement : 
assert: ↑b
, 
eq_atom: x =a y
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
atom: Atom
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
equal-wf-base, 
atom_subtype_base, 
iff_weakening_uiff, 
assert_wf, 
eq_atom_wf, 
assert_of_eq_atom, 
assert_witness, 
uiff_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
atomEquality, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
because_Cache, 
addLevel, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
instantiate, 
cumulativity, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality
Latex:
\mforall{}[a,b:Atom].    uiff(a  =  b;\muparrow{}a  =a  b)
Date html generated:
2019_06_20-PM-00_31_57
Last ObjectModification:
2018_08_24-PM-10_58_42
Theory : equality!deciders
Home
Index