Nuprl Lemma : atom-deq-aux

[a,b:Atom].  uiff(a b ∈ Atom;↑=a b)


Proof




Definitions occuring in Statement :  assert: b eq_atom: =a y uiff: uiff(P;Q) uall: [x:A]. B[x] atom: Atom equal: t ∈ T
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B rev_implies:  Q implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  equal-wf-base atom_subtype_base iff_weakening_uiff assert_wf eq_atom_wf assert_of_eq_atom assert_witness uiff_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin atomEquality hypothesisEquality applyEquality sqequalRule because_Cache addLevel productElimination independent_isectElimination independent_functionElimination instantiate cumulativity independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality

Latex:
\mforall{}[a,b:Atom].    uiff(a  =  b;\muparrow{}a  =a  b)



Date html generated: 2019_06_20-PM-00_31_57
Last ObjectModification: 2018_08_24-PM-10_58_42

Theory : equality!deciders


Home Index