Nuprl Lemma : int-deq-aux

[a,b:ℤ].  uiff(a b ∈ ℤ;↑(a =z b))


Proof




Definitions occuring in Statement :  assert: b eq_int: (i =z j) uiff: uiff(P;Q) uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B rev_implies:  Q implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  equal-wf-base int_subtype_base iff_weakening_uiff assert_wf eq_int_wf assert_of_eq_int assert_witness uiff_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality applyEquality sqequalRule because_Cache addLevel productElimination independent_isectElimination independent_functionElimination instantiate cumulativity independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].    uiff(a  =  b;\muparrow{}(a  =\msubz{}  b))



Date html generated: 2019_06_20-PM-00_31_55
Last ObjectModification: 2018_08_24-PM-10_58_43

Theory : equality!deciders


Home Index