Nuprl Lemma : proddeq_wf
∀[A,B:Type]. ∀[a:EqDecider(A)]. ∀[b:EqDecider(B)].  (proddeq(a;b) ∈ (A × B) ⟶ (A × B) ⟶ 𝔹)
Proof
Definitions occuring in Statement : 
proddeq: proddeq(a;b)
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
proddeq: proddeq(a;b)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Lemmas referenced : 
band_wf, 
pi1_wf, 
pi2_wf, 
set_wf, 
bool_wf, 
all_wf, 
iff_wf, 
equal_wf, 
assert_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[a:EqDecider(A)].  \mforall{}[b:EqDecider(B)].    (proddeq(a;b)  \mmember{}  (A  \mtimes{}  B)  {}\mrightarrow{}  (A  \mtimes{}  B)  {}\mrightarrow{}  \mBbbB{})
Date html generated:
2016_05_14-AM-06_07_17
Last ObjectModification:
2015_12_26-AM-11_46_22
Theory : equality!deciders
Home
Index