Nuprl Lemma : proddeq_wf

[A,B:Type]. ∀[a:EqDecider(A)]. ∀[b:EqDecider(B)].  (proddeq(a;b) ∈ (A × B) ⟶ (A × B) ⟶ 𝔹)


Proof




Definitions occuring in Statement :  proddeq: proddeq(a;b) deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  proddeq: proddeq(a;b) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: iff: ⇐⇒ Q all: x:A. B[x] rev_implies:  Q implies:  Q and: P ∧ Q
Lemmas referenced :  band_wf pi1_wf pi2_wf set_wf bool_wf all_wf iff_wf equal_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality setElimination rename hypothesisEquality hypothesis productEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[a:EqDecider(A)].  \mforall{}[b:EqDecider(B)].    (proddeq(a;b)  \mmember{}  (A  \mtimes{}  B)  {}\mrightarrow{}  (A  \mtimes{}  B)  {}\mrightarrow{}  \mBbbB{})



Date html generated: 2016_05_14-AM-06_07_17
Last ObjectModification: 2015_12_26-AM-11_46_22

Theory : equality!deciders


Home Index