Nuprl Lemma : equipollent-powerset

n:ℕ. ∀T:Type.  (T ~ ℕ powerset(T) ~ ℕ2^n)


This theorem is one of freek's list of 100 theorems



Proof




Definitions occuring in Statement :  powerset: powerset(T) equipollent: B exp: i^n int_seg: {i..j-} nat: all: x:A. B[x] implies:  Q natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q powerset: powerset(T) member: t ∈ T uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equipollent_wf int_seg_wf nat_wf exp_wf2 equipollent-exp false_wf le_wf equipollent_functionality_wrt_equipollent function_functionality_wrt_equipollent_left equipollent_weakening_ext-eq ext-eq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality setElimination rename hypothesis universeEquality functionEquality because_Cache dependent_functionElimination dependent_set_memberEquality sqequalRule independent_pairFormation independent_functionElimination independent_isectElimination productElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}T:Type.    (T  \msim{}  \mBbbN{}n  {}\mRightarrow{}  powerset(T)  \msim{}  \mBbbN{}2\^{}n)



Date html generated: 2016_05_14-PM-04_02_36
Last ObjectModification: 2015_12_26-PM-07_42_46

Theory : equipollence!!cardinality!


Home Index