Nuprl Lemma : finite-fixed-length
∀T:Type. ∀n:ℕ.  (finite(T) ⇒ finite({l:T List| ||l|| = n ∈ ℤ} ))
Proof
Definitions occuring in Statement : 
finite: finite(T), 
length: ||as||, 
list: T List, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
finite: finite(T), 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
prop: ℙ, 
nat: ℕ
Lemmas referenced : 
equipollent-list, 
finite_wf, 
nat_wf, 
exp_wf4, 
equipollent_wf, 
list_wf, 
equal_wf, 
length_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
hypothesis, 
cumulativity, 
universeEquality, 
dependent_pairFormation, 
setEquality, 
intEquality, 
setElimination, 
rename, 
natural_numberEquality
Latex:
\mforall{}T:Type.  \mforall{}n:\mBbbN{}.    (finite(T)  {}\mRightarrow{}  finite(\{l:T  List|  ||l||  =  n\}  ))
Date html generated:
2017_04_17-AM-09_34_43
Last ObjectModification:
2017_02_27-PM-05_33_38
Theory : equipollence!!cardinality!
Home
Index