Nuprl Lemma : equipollent-list

[T:Type]. ∀k:ℕ(T ~ ℕ (∀n:ℕ{as:T List| ||as|| n ∈ ℤ}  ~ ℕk^n))


Proof




Definitions occuring in Statement :  equipollent: B exp: i^n length: ||as|| list: List int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q equipollent: B exists: x:A. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False biject: Bij(A;B;f) inject: Inj(A;B;f) less_than: a < b squash: T surject: Surj(A;B;f)
Lemmas referenced :  equipollent-exp equipollent_wf int_seg_wf istype-nat istype-universe list_wf equal-wf-base length_wf_nat set_subtype_base le_wf istype-int int_subtype_base exp_wf2 equipollent_functionality_wrt_equipollent2 equipollent_inversion function_functionality_wrt_equipollent_right select_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma biject_wf list_extensionality istype-less_than istype-le map-length length_upto map_wf upto_wf select-map subtype_rel_list top_wf length_wf select-upto
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality inhabitedIsType universeIsType isectElimination natural_numberEquality setElimination rename hypothesis instantiate universeEquality setEquality intEquality applyEquality sqequalRule lambdaEquality_alt independent_isectElimination because_Cache functionEquality productElimination independent_functionElimination dependent_pairFormation_alt equalityTransitivity equalitySymmetry unionElimination approximateComputation int_eqEquality Error :memTop,  independent_pairFormation voidElimination setIsType equalityIstype sqequalBase functionIsType imageElimination dependent_set_memberEquality_alt applyLambdaEquality productIsType functionExtensionality_alt

Latex:
\mforall{}[T:Type].  \mforall{}k:\mBbbN{}.  (T  \msim{}  \mBbbN{}k  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \{as:T  List|  ||as||  =  n\}    \msim{}  \mBbbN{}k\^{}n))



Date html generated: 2020_05_19-PM-10_00_39
Last ObjectModification: 2020_01_04-PM-08_00_20

Theory : equipollence!!cardinality!


Home Index