Nuprl Lemma : finite-product

[S:Type]. ∀[T:S ⟶ Type].  (finite(S)  (∀s:S. finite(T[s]))  finite(s:S × T[s]))


Proof




Definitions occuring in Statement :  finite: finite(T) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q finite: finite(T) exists: x:A. B[x] all: x:A. B[x] member: t ∈ T so_apply: x[s] prop: subtype_rel: A ⊆B nat: pi1: fst(t) equipollent: B inv_funs: InvFuns(A;B;f;g) and: P ∧ Q so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B tidentity: Id{T} compose: g identity: Id true: True guard: {T} squash: T uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  finite_wf istype-universe equipollent_wf int_seg_wf istype-nat bij_imp_exists_inv product_functionality_wrt_equipollent_dependent squash_wf true_wf istype-int iff_weakening_equal equipollent_functionality_wrt_equipollent2 sum_wf equipollent-sum sum-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution sqequalRule productElimination thin cut hypothesis promote_hyp functionIsType universeIsType hypothesisEquality introduction extract_by_obid isectElimination applyEquality inhabitedIsType instantiate universeEquality because_Cache functionExtensionality natural_numberEquality lambdaEquality_alt setElimination rename dependent_pairFormation_alt equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination applyLambdaEquality imageElimination imageMemberEquality baseClosed independent_isectElimination productEquality

Latex:
\mforall{}[S:Type].  \mforall{}[T:S  {}\mrightarrow{}  Type].    (finite(S)  {}\mRightarrow{}  (\mforall{}s:S.  finite(T[s]))  {}\mRightarrow{}  finite(s:S  \mtimes{}  T[s]))



Date html generated: 2020_05_19-PM-10_00_42
Last ObjectModification: 2019_10_25-PM-09_02_51

Theory : equipollence!!cardinality!


Home Index