Nuprl Lemma : quotient-equipollent-nat

[A:Type]. ∀[k:ℕ].
  (finite-type(A)
   (∀E:A ⟶ A ⟶ ℙx,y:A//E[x;y] ~ ℕ⇐⇒ ~ ℕmod (a1,a2.E[a1;a2]) supposing EquivRel(A;x,y.E[x;y])))


Proof




Definitions occuring in Statement :  equiv-equipollent: mod (a1,a2.E[a1; a2]) equipollent: B finite-type: finite-type(T) equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: nat: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q
Lemmas referenced :  equiv-equipollent_wf int_seg_wf quotient-equipollent decidable__equal-int_seg equipollent_wf quotient_wf iff_wf equiv_rel_wf finite-type_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality setElimination rename sqequalRule lambdaEquality applyEquality because_Cache addLevel productElimination impliesFunctionality independent_functionElimination dependent_functionElimination independent_isectElimination functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[k:\mBbbN{}].
    (finite-type(A)
    {}\mRightarrow{}  (\mforall{}E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}
                x,y:A//E[x;y]  \msim{}  \mBbbN{}k  \mLeftarrow{}{}\mRightarrow{}  A  \msim{}  \mBbbN{}k  mod  (a1,a2.E[a1;a2])  supposing  EquivRel(A;x,y.E[x;y])))



Date html generated: 2018_05_21-PM-00_53_12
Last ObjectModification: 2018_05_19-AM-06_40_09

Theory : equipollence!!cardinality!


Home Index