Nuprl Lemma : fset-filter-subset2
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[P:{x:T| x ∈ s}  ⟶ 𝔹].  {x ∈ s | P[x]} ⊆ s
Proof
Definitions occuring in Statement : 
fset-filter: {x ∈ s | P[x]}
, 
f-subset: xs ⊆ ys
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
f-subset: xs ⊆ ys
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
member-fset-filter2, 
fset-member_wf, 
fset-member_witness, 
istype-universe, 
bool_wf, 
fset_wf, 
deq_wf, 
fset-filter_wf, 
fset-subtype, 
fset-subtype2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
hypothesis, 
Error :inhabitedIsType, 
setElimination, 
rename, 
applyEquality, 
Error :dependent_set_memberEquality_alt, 
Error :universeIsType, 
dependent_functionElimination, 
Error :setIsType, 
productElimination, 
independent_isectElimination, 
Error :equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
Error :functionIsType, 
universeEquality, 
setEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].  \mforall{}[P:\{x:T|  x  \mmember{}  s\}    {}\mrightarrow{}  \mBbbB{}].    \{x  \mmember{}  s  |  P[x]\}  \msubseteq{}  s
Date html generated:
2019_06_20-PM-01_58_58
Last ObjectModification:
2018_10_06-PM-11_55_33
Theory : finite!sets
Home
Index