Nuprl Lemma : fset-filter-subset2

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[P:{x:T| x ∈ s}  ⟶ 𝔹].  {x ∈ P[x]} ⊆ s


Proof




Definitions occuring in Statement :  fset-filter: {x ∈ P[x]} f-subset: xs ⊆ ys fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] f-subset: xs ⊆ ys all: x:A. B[x] uimplies: supposing a member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] guard: {T} uiff: uiff(P;Q) and: P ∧ Q implies:  Q subtype_rel: A ⊆B
Lemmas referenced :  member-fset-filter2 fset-member_wf fset-member_witness istype-universe bool_wf fset_wf deq_wf fset-filter_wf fset-subtype fset-subtype2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule Error :lambdaEquality_alt,  hypothesis Error :inhabitedIsType,  setElimination rename applyEquality Error :dependent_set_memberEquality_alt,  Error :universeIsType,  dependent_functionElimination Error :setIsType,  productElimination independent_isectElimination Error :equalityIsType1,  equalityTransitivity equalitySymmetry independent_functionElimination because_Cache Error :functionIsType,  universeEquality setEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].  \mforall{}[P:\{x:T|  x  \mmember{}  s\}    {}\mrightarrow{}  \mBbbB{}].    \{x  \mmember{}  s  |  P[x]\}  \msubseteq{}  s



Date html generated: 2019_06_20-PM-01_58_58
Last ObjectModification: 2018_10_06-PM-11_55_33

Theory : finite!sets


Home Index