Nuprl Lemma : injection-composition

[A,B,C:Type]. ∀[f:A ⟶ B]. ∀[g:B ⟶ C].  (Inj(A;C;g f)) supposing (Inj(B;C;g) and Inj(A;B;f))


Proof




Definitions occuring in Statement :  inject: Inj(A;B;f) compose: g uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  inject: Inj(A;B;f) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} compose: g
Lemmas referenced :  equal_wf compose_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality applyEquality functionExtensionality lambdaEquality dependent_functionElimination axiomEquality because_Cache functionEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality independent_functionElimination

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  C].    (Inj(A;C;g  o  f))  supposing  (Inj(B;C;g)  and  Inj(A;B;f))



Date html generated: 2017_04_14-AM-07_34_19
Last ObjectModification: 2017_02_27-PM-03_07_30

Theory : fun_1


Home Index