Nuprl Lemma : injection-if-compose-injection
∀[T:Type]. ∀[f,g:T ⟶ T].  Inj(T;T;f) supposing Inj(T;T;g o f)
Proof
Definitions occuring in Statement : 
inject: Inj(A;B;f)
, 
compose: f o g
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
compose: f o g
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
inject_wf, 
compose_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
lambdaFormation, 
hypothesis, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[f,g:T  {}\mrightarrow{}  T].    Inj(T;T;f)  supposing  Inj(T;T;g  o  f)
Date html generated:
2017_04_14-AM-07_34_15
Last ObjectModification:
2017_02_27-PM-03_07_27
Theory : fun_1
Home
Index