Nuprl Lemma : inv_funs-iff
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[g:B ⟶ A].  (InvFuns(A;B;f;g) 
⇐⇒ (∀a:A. ((g (f a)) = a ∈ A)) ∧ (∀b:B. ((f (g b)) = b ∈ B)))
Proof
Definitions occuring in Statement : 
inv_funs: InvFuns(A;B;f;g)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
inv_funs: InvFuns(A;B;f;g)
, 
tidentity: Id{T}
, 
identity: Id
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
compose: f o g
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
equal-wf-T-base, 
compose_wf, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
productEquality, 
extract_by_obid, 
isectElimination, 
functionEquality, 
cumulativity, 
functionExtensionality, 
applyEquality, 
baseClosed, 
because_Cache, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
independent_isectElimination, 
independent_functionElimination, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  A].
    (InvFuns(A;B;f;g)  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}a:A.  ((g  (f  a))  =  a))  \mwedge{}  (\mforall{}b:B.  ((f  (g  b))  =  b)))
Date html generated:
2017_04_14-AM-07_33_16
Last ObjectModification:
2017_02_27-PM-03_07_13
Theory : fun_1
Home
Index