Nuprl Lemma : eq_atom_eq_false_elim
∀[x,y:Atom].  ¬(x = y ∈ Atom) supposing x =a y = ff
Proof
Definitions occuring in Statement : 
eq_atom: x =a y
, 
bfalse: ff
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
atom: Atom
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
Lemmas referenced : 
equal-wf-base, 
atom_subtype_base, 
bool_wf, 
assert_wf, 
bnot_wf, 
eq_atom_wf, 
not_wf, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
not_functionality_wrt_uiff, 
assert_of_eq_atom
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
atomEquality, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
Error :universeIsType, 
baseApply, 
closedConclusion, 
baseClosed, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}[x,y:Atom].    \mneg{}(x  =  y)  supposing  x  =a  y  =  ff
Date html generated:
2019_06_20-AM-11_33_15
Last ObjectModification:
2018_09_26-PM-00_12_08
Theory : int_1
Home
Index