Nuprl Lemma : eq_atom_eq_false_elim

[x,y:Atom].  ¬(x y ∈ Atom) supposing =a ff


Proof




Definitions occuring in Statement :  eq_atom: =a y bfalse: ff bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] not: ¬A atom: Atom equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B guard: {T} uiff: uiff(P;Q) and: P ∧ Q
Lemmas referenced :  equal-wf-base atom_subtype_base bool_wf assert_wf bnot_wf eq_atom_wf not_wf uiff_transitivity eqff_to_assert assert_of_bnot not_functionality_wrt_uiff assert_of_eq_atom
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination atomEquality hypothesisEquality applyEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache Error :universeIsType,  baseApply closedConclusion baseClosed isect_memberEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  productElimination independent_isectElimination

Latex:
\mforall{}[x,y:Atom].    \mneg{}(x  =  y)  supposing  x  =a  y  =  ff



Date html generated: 2019_06_20-AM-11_33_15
Last ObjectModification: 2018_09_26-PM-00_12_08

Theory : int_1


Home Index