Nuprl Lemma : imax_strict_lb

[a,b,c:ℤ].  uiff(imax(a;b) < c;a < c ∧ b < c)


Proof




Definitions occuring in Statement :  imax: imax(a;b) less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: guard: {T} cand: c∧ B le: A ≤ B
Lemmas referenced :  and_wf less_than_wf member-less_than decidable__lt int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermSubtract_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt imax_wf decidable__le subtract_wf imax_lb
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality introduction natural_numberEquality productElimination independent_pairFormation independent_isectElimination dependent_functionElimination because_Cache unionElimination imageElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll independent_pairEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b,c:\mBbbZ{}].    uiff(imax(a;b)  <  c;a  <  c  \mwedge{}  b  <  c)



Date html generated: 2016_05_14-AM-07_22_07
Last ObjectModification: 2016_01_07-PM-04_00_37

Theory : int_2


Home Index