Nuprl Lemma : concat_iseg
∀[T:Type]. ∀ll1,ll2:T List List. (ll1 ≤ ll2
⇒ concat(ll1) ≤ concat(ll2))
Proof
Definitions occuring in Statement :
iseg: l1 ≤ l2
,
concat: concat(ll)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
universe: Type
Definitions unfolded in proof :
iseg: l1 ≤ l2
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
top: Top
Lemmas referenced :
exists_wf,
list_wf,
equal_wf,
concat_wf,
append_wf,
concat_append
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
sqequalHypSubstitution,
productElimination,
thin,
cut,
hypothesis,
hyp_replacement,
equalitySymmetry,
Error :applyLambdaEquality,
introduction,
extract_by_obid,
isectElimination,
cumulativity,
hypothesisEquality,
lambdaEquality,
universeEquality,
isect_memberEquality,
voidElimination,
voidEquality,
dependent_pairFormation,
because_Cache
Latex:
\mforall{}[T:Type]. \mforall{}ll1,ll2:T List List. (ll1 \mleq{} ll2 {}\mRightarrow{} concat(ll1) \mleq{} concat(ll2))
Date html generated:
2016_10_21-AM-10_35_04
Last ObjectModification:
2016_07_12-AM-05_46_12
Theory : list_1
Home
Index