Nuprl Lemma : filter-contains

[T:Type]. ∀as:T List. ∀P:T ⟶ 𝔹.  filter(P;as) ⊆ as


Proof




Definitions occuring in Statement :  l_contains: A ⊆ B filter: filter(P;l) list: List bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  l_contains: A ⊆ B uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  l_all_iff filter_wf5 subtype_rel_dep_function bool_wf l_member_wf subtype_rel_self set_wf member_filter_2 list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination applyEquality because_Cache lambdaEquality hypothesis setEquality independent_isectElimination setElimination rename productElimination independent_functionElimination functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}as:T  List.  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.    filter(P;as)  \msubseteq{}  as



Date html generated: 2016_05_14-PM-01_28_58
Last ObjectModification: 2015_12_26-PM-05_22_11

Theory : list_1


Home Index