Nuprl Lemma : iseg-subtype

[A,B:Type].  ∀xs,ys:A List.  {xs ≤ ys  xs ≤ ys} supposing strong-subtype(A;B)


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 list: List strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] guard: {T} all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q prop: subtype_rel: A ⊆B strong-subtype: strong-subtype(A;B) cand: c∧ B iseg: l1 ≤ l2 exists: x:A. B[x] squash: T label: ...$L... t true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  strong-subtype_witness iseg_wf subtype_rel_list strong-subtype_wf list_wf strong-subtype-equal-lists nth_tl_wf length_wf equal_wf nth_tl_append squash_wf true_wf append_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis rename cumulativity applyEquality because_Cache independent_isectElimination productElimination universeEquality equalityTransitivity equalitySymmetry hyp_replacement applyLambdaEquality dependent_pairFormation lambdaEquality imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[A,B:Type].    \mforall{}xs,ys:A  List.    \{xs  \mleq{}  ys  {}\mRightarrow{}  xs  \mleq{}  ys\}  supposing  strong-subtype(A;B)



Date html generated: 2017_04_17-AM-09_00_06
Last ObjectModification: 2017_02_27-PM-05_15_33

Theory : list_1


Home Index