Nuprl Lemma : l_contains-append
∀[T:Type]. ∀A,B,C:T List.  (A @ B ⊆ C 
⇐⇒ A ⊆ C ∧ B ⊆ C)
Proof
Definitions occuring in Statement : 
l_contains: A ⊆ B
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
l_contains: A ⊆ B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
or: P ∨ Q
, 
prop: ℙ
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
l_member_wf, 
all_wf, 
or_wf, 
member_append, 
append_wf, 
iff_wf, 
l_all_iff, 
l_all_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
inlFormation, 
introduction, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
inrFormation, 
because_Cache, 
lambdaEquality, 
functionEquality, 
productElimination, 
unionElimination, 
productEquality, 
addLevel, 
setElimination, 
rename, 
setEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}A,B,C:T  List.    (A  @  B  \msubseteq{}  C  \mLeftarrow{}{}\mRightarrow{}  A  \msubseteq{}  C  \mwedge{}  B  \msubseteq{}  C)
Date html generated:
2019_06_20-PM-01_26_43
Last ObjectModification:
2018_08_24-PM-11_16_47
Theory : list_1
Home
Index