Nuprl Lemma : l_member_set
∀[A:Type]. ∀[P:A ⟶ ℙ].  ∀L:A List. ∀x:A.  ((∀x∈L.P[x]) ⇒ {(x ∈ L) ⇒ (x ∈ L)})
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x]), 
l_member: (x ∈ l), 
list: T List, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
guard: {T}, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
rev_implies: P ⇐ Q
Lemmas referenced : 
l_all_iff, 
l_member_wf, 
l_member-settype, 
list-subtype, 
subtype_rel_list_set, 
subtype_rel_self, 
l_all_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
hypothesis, 
setEquality, 
productElimination, 
independent_functionElimination, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_set_memberEquality, 
instantiate, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L:A  List.  \mforall{}x:A.    ((\mforall{}x\mmember{}L.P[x])  {}\mRightarrow{}  \{(x  \mmember{}  L)  {}\mRightarrow{}  (x  \mmember{}  L)\})
Date html generated:
2019_06_20-PM-01_24_55
Last ObjectModification:
2018_08_24-PM-10_49_56
Theory : list_1
Home
Index