Nuprl Lemma : l_member_set

[A:Type]. ∀[P:A ⟶ ℙ].  ∀L:A List. ∀x:A.  ((∀x∈L.P[x])  {(x ∈ L)  (x ∈ L)})


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: iff: ⇐⇒ Q and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a rev_implies:  Q
Lemmas referenced :  l_all_iff l_member_wf l_member-settype list-subtype subtype_rel_list_set subtype_rel_self l_all_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality lambdaEquality applyEquality setElimination rename hypothesis setEquality productElimination independent_functionElimination cumulativity equalityTransitivity equalitySymmetry independent_isectElimination dependent_set_memberEquality instantiate functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L:A  List.  \mforall{}x:A.    ((\mforall{}x\mmember{}L.P[x])  {}\mRightarrow{}  \{(x  \mmember{}  L)  {}\mRightarrow{}  (x  \mmember{}  L)\})



Date html generated: 2019_06_20-PM-01_24_55
Last ObjectModification: 2018_08_24-PM-10_49_56

Theory : list_1


Home Index