Nuprl Lemma : last-decomp
∀[l:Top List]. l ~ firstn(||l|| - 1;l) @ [last(l)] supposing 0 < ||l||
Proof
Definitions occuring in Statement : 
firstn: firstn(n;as), 
last: last(L), 
length: ||as||, 
append: as @ bs, 
cons: [a / b], 
nil: [], 
list: T List, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
subtract: n - m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
nat: ℕ, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
prop: ℙ, 
last: last(L)
Lemmas referenced : 
firstn_decomp2, 
top_wf, 
length_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
firstn_all, 
istype-less_than, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_set_memberEquality_alt, 
hypothesisEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
imageElimination, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
because_Cache, 
axiomSqEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[l:Top  List].  l  \msim{}  firstn(||l||  -  1;l)  @  [last(l)]  supposing  0  <  ||l||
Date html generated:
2020_05_19-PM-09_43_53
Last ObjectModification:
2020_03_09-PM-00_39_57
Theory : list_1
Home
Index