Nuprl Lemma : list-decomp-nat-iseg

[T:Type]. ∀L:T List. ∀i:ℕ||L|| 1.  ∃K:T List. (K ≤ L ∧ (||K|| i ∈ ℤ))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q add: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T exists: x:A. B[x] and: P ∧ Q cand: c∧ B iseg: l1 ≤ l2 prop: int_seg: {i..j-}
Lemmas referenced :  list-decomp-nat equal_wf list_wf append_wf and_wf iseg_wf length_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination productElimination dependent_pairFormation hypothesis independent_pairFormation intEquality setElimination rename natural_numberEquality addEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}i:\mBbbN{}||L||  +  1.    \mexists{}K:T  List.  (K  \mleq{}  L  \mwedge{}  (||K||  =  i))



Date html generated: 2016_05_14-PM-03_01_15
Last ObjectModification: 2015_12_26-PM-01_56_41

Theory : list_1


Home Index