Nuprl Lemma : list-decomp-nat

[T:Type]. ∀L:T List. ∀i:ℕ||L|| 1.  ∃K,J:T List. ((L (K J) ∈ (T List)) ∧ (||K|| i ∈ ℤ))


Proof




Definitions occuring in Statement :  length: ||as|| append: as bs list: List int_seg: {i..j-} uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q add: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q top: Top so_apply: x[s] implies:  Q int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cand: c∧ B less_than: a < b squash: T uiff: uiff(P;Q) true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction all_wf int_seg_wf length_wf exists_wf list_wf equal_wf append_wf length-append length_of_nil_lemma decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties int_seg_subtype false_wf int_seg_cases satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf length_of_cons_lemma nil_wf cons_wf list_ind_nil_lemma equal-wf-base-T subtract_wf decidable__le intformnot_wf itermSubtract_wf intformeq_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma decidable__lt add-is-int-iff itermAdd_wf int_term_value_add_lemma lelt_wf list_ind_cons_lemma squash_wf true_wf iff_weakening_equal append_back_nil equal-wf-base equal-wf-T-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality natural_numberEquality addEquality cumulativity hypothesis because_Cache productEquality applyLambdaEquality isect_memberEquality voidElimination voidEquality independent_functionElimination dependent_functionElimination setElimination rename unionElimination instantiate intEquality independent_isectElimination equalityTransitivity equalitySymmetry hypothesis_subsumption independent_pairFormation productElimination dependent_pairFormation int_eqEquality computeAll baseClosed dependent_set_memberEquality pointwiseFunctionality promote_hyp imageElimination baseApply closedConclusion applyEquality imageMemberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}i:\mBbbN{}||L||  +  1.    \mexists{}K,J:T  List.  ((L  =  (K  @  J))  \mwedge{}  (||K||  =  i))



Date html generated: 2017_04_17-AM-08_45_02
Last ObjectModification: 2017_02_27-PM-05_04_53

Theory : list_1


Home Index