Nuprl Lemma : listp_decomp_last
∀[T:Type]. ∀L:T List+. ∃K:T List. (L = (K @ [last(L)]) ∈ (T List))
Proof
Definitions occuring in Statement : 
last: last(L), 
listp: A List+, 
append: as @ bs, 
cons: [a / b], 
nil: [], 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
listp: A List+, 
uimplies: b supposing a, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
and: P ∧ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
prop: ℙ
Lemmas referenced : 
listp_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
length_wf, 
decidable__lt, 
list_decomp_last, 
listp_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
productElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List\msupplus{}.  \mexists{}K:T  List.  (L  =  (K  @  [last(L)]))
Date html generated:
2016_05_14-PM-03_00_56
Last ObjectModification:
2016_01_15-AM-07_23_38
Theory : list_1
Home
Index