Nuprl Lemma : mapfilter-wf2
∀[A,B:Type]. ∀[L:A List]. ∀[P:{x:A| (x ∈ L)}  ⟶ 𝔹]. ∀[f:{x:A| (x ∈ L) ∧ (↑(P x))}  ⟶ B].  (mapfilter(f;P;L) ∈ B List)
Proof
Definitions occuring in Statement : 
mapfilter: mapfilter(f;P;L)
, 
l_member: (x ∈ l)
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
mapfilter_wf, 
l_member_wf, 
list-subtype, 
subtype_rel_dep_function, 
assert_wf, 
set_wf, 
bool_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
productEquality, 
dependent_set_memberEquality, 
sqequalRule, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
independent_isectElimination, 
independent_pairFormation, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[L:A  List].  \mforall{}[P:\{x:A|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{x:A|  (x  \mmember{}  L)  \mwedge{}  (\muparrow{}(P  x))\}    {}\mrightarrow{}  B].
    (mapfilter(f;P;L)  \mmember{}  B  List)
Date html generated:
2016_05_14-AM-07_50_05
Last ObjectModification:
2015_12_26-PM-04_45_52
Theory : list_1
Home
Index