Nuprl Lemma : mapfilter-wf2

[A,B:Type]. ∀[L:A List]. ∀[P:{x:A| (x ∈ L)}  ⟶ 𝔹]. ∀[f:{x:A| (x ∈ L) ∧ (↑(P x))}  ⟶ B].  (mapfilter(f;P;L) ∈ List)


Proof




Definitions occuring in Statement :  mapfilter: mapfilter(f;P;L) l_member: (x ∈ l) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: subtype_rel: A ⊆B and: P ∧ Q so_lambda: λ2x.t[x] all: x:A. B[x] so_apply: x[s] uimplies: supposing a
Lemmas referenced :  mapfilter_wf l_member_wf list-subtype subtype_rel_dep_function assert_wf set_wf bool_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality cumulativity hypothesisEquality because_Cache hypothesis equalityTransitivity equalitySymmetry applyEquality productEquality dependent_set_memberEquality sqequalRule lambdaEquality lambdaFormation setElimination rename independent_isectElimination independent_pairFormation axiomEquality functionEquality isect_memberEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[L:A  List].  \mforall{}[P:\{x:A|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{x:A|  (x  \mmember{}  L)  \mwedge{}  (\muparrow{}(P  x))\}    {}\mrightarrow{}  B].
    (mapfilter(f;P;L)  \mmember{}  B  List)



Date html generated: 2016_05_14-AM-07_50_05
Last ObjectModification: 2015_12_26-PM-04_45_52

Theory : list_1


Home Index