Nuprl Lemma : member-filter3
∀[T:Type]. ∀P:T ⟶ 𝔹. ∀L:T List. ∀x:{x:T| ↑(P x)} .  ((x ∈ L) ⇒ (x ∈ filter(P;L)))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l), 
filter: filter(P;l), 
list: T List, 
assert: ↑b, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
prop: ℙ
Lemmas referenced : 
l_member_set2, 
assert_wf, 
filter_type, 
member_filter, 
assert_elim, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
l_member_wf, 
set_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
dependent_functionElimination, 
cumulativity, 
setElimination, 
rename, 
independent_functionElimination, 
because_Cache, 
productElimination, 
independent_pairFormation, 
addLevel, 
independent_isectElimination, 
levelHypothesis, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:T  List.  \mforall{}x:\{x:T|  \muparrow{}(P  x)\}  .    ((x  \mmember{}  L)  {}\mRightarrow{}  (x  \mmember{}  filter(P;L)))
Date html generated:
2016_05_14-AM-07_50_53
Last ObjectModification:
2015_12_26-PM-04_46_14
Theory : list_1
Home
Index