Nuprl Lemma : member-filter3

[T:Type]. ∀P:T ⟶ 𝔹. ∀L:T List. ∀x:{x:T| ↑(P x)} .  ((x ∈ L)  (x ∈ filter(P;L)))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) filter: filter(P;l) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uimplies: supposing a sq_type: SQType(T) guard: {T} assert: b ifthenelse: if then else fi  btrue: tt true: True prop:
Lemmas referenced :  l_member_set2 assert_wf filter_type member_filter assert_elim subtype_base_sq bool_wf bool_subtype_base l_member_wf set_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis dependent_functionElimination cumulativity setElimination rename independent_functionElimination because_Cache productElimination independent_pairFormation addLevel independent_isectElimination levelHypothesis instantiate equalityTransitivity equalitySymmetry natural_numberEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:T  List.  \mforall{}x:\{x:T|  \muparrow{}(P  x)\}  .    ((x  \mmember{}  L)  {}\mRightarrow{}  (x  \mmember{}  filter(P;L)))



Date html generated: 2016_05_14-AM-07_50_53
Last ObjectModification: 2015_12_26-PM-04_46_14

Theory : list_1


Home Index