Nuprl Lemma : permutation-rotate-cons
∀[A:Type]. ∀a:A. ∀as:A List. permutation(A;[a / as];as @ [a])
Proof
Definitions occuring in Statement :
permutation: permutation(T;L1;L2)
,
append: as @ bs
,
cons: [a / b]
,
nil: []
,
list: T List
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
append: as @ bs
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
top: Top
,
so_apply: x[s1;s2;s3]
Lemmas referenced :
permutation-rotate,
cons_wf,
nil_wf,
list_ind_cons_lemma,
list_ind_nil_lemma,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
dependent_functionElimination,
hypothesisEquality,
hypothesis,
sqequalRule,
isect_memberEquality,
voidElimination,
voidEquality,
universeEquality
Latex:
\mforall{}[A:Type]. \mforall{}a:A. \mforall{}as:A List. permutation(A;[a / as];as @ [a])
Date html generated:
2016_05_14-PM-02_18_47
Last ObjectModification:
2015_12_26-PM-04_29_10
Theory : list_1
Home
Index