Nuprl Lemma : chrem_exists_aux

r,s:ℕ+.  (CoPrime(r,s)  (∃x:ℤ((x ≡ mod r) ∧ (x ≡ mod s))))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m coprime: CoPrime(a,b) nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n int:
Definitions unfolded in proof :  eqmod: a ≡ mod m all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat_plus: + prop: iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] divides: a decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top subtype_rel: A ⊆B
Lemmas referenced :  coprime_wf nat_plus_wf coprime_bezout_id subtract_wf divides_wf nat_plus_properties decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermSubtract_wf itermConstant_wf itermMultiply_wf itermVar_wf itermMinus_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_term_value_minus_lemma int_formula_prop_wf int_subtype_base intformand_wf itermAdd_wf int_formula_prop_and_lemma int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis Error :inhabitedIsType,  dependent_functionElimination productElimination independent_functionElimination Error :dependent_pairFormation_alt,  natural_numberEquality multiplyEquality Error :productIsType,  because_Cache independent_pairFormation minusEquality unionElimination independent_isectElimination approximateComputation Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :equalityIsType4,  equalityTransitivity equalitySymmetry applyEquality

Latex:
\mforall{}r,s:\mBbbN{}\msupplus{}.    (CoPrime(r,s)  {}\mRightarrow{}  (\mexists{}x:\mBbbZ{}.  ((x  \mequiv{}  1  mod  r)  \mwedge{}  (x  \mequiv{}  0  mod  s))))



Date html generated: 2019_06_20-PM-02_24_52
Last ObjectModification: 2018_10_03-AM-00_13_12

Theory : num_thy_1


Home Index