Nuprl Lemma : chrem_exists_aux
∀r,s:ℕ+.  (CoPrime(r,s) 
⇒ (∃x:ℤ. ((x ≡ 1 mod r) ∧ (x ≡ 0 mod s))))
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m
, 
coprime: CoPrime(a,b)
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
eqmod: a ≡ b mod m
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
divides: b | a
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
coprime_wf, 
nat_plus_wf, 
coprime_bezout_id, 
subtract_wf, 
divides_wf, 
nat_plus_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermMinus_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_term_value_minus_lemma, 
int_formula_prop_wf, 
int_subtype_base, 
intformand_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
natural_numberEquality, 
multiplyEquality, 
Error :productIsType, 
because_Cache, 
independent_pairFormation, 
minusEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :equalityIsType4, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality
Latex:
\mforall{}r,s:\mBbbN{}\msupplus{}.    (CoPrime(r,s)  {}\mRightarrow{}  (\mexists{}x:\mBbbZ{}.  ((x  \mequiv{}  1  mod  r)  \mwedge{}  (x  \mequiv{}  0  mod  s))))
Date html generated:
2019_06_20-PM-02_24_52
Last ObjectModification:
2018_10_03-AM-00_13_12
Theory : num_thy_1
Home
Index