Nuprl Lemma : divides_product

x,y,z:ℤ.  (((x y) ∨ (x z))  (x (y z)))


Proof




Definitions occuring in Statement :  divides: a all: x:A. B[x] implies:  Q or: P ∨ Q multiply: m int:
Definitions unfolded in proof :  divides: a all: x:A. B[x] implies:  Q or: P ∨ Q exists: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a sq_type: SQType(T) guard: {T} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermVar_wf itermMultiply_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int int_subtype_base subtype_base_sq equal_wf exists_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation sqequalHypSubstitution unionElimination thin productElimination cut lemma_by_obid isectElimination intEquality lambdaEquality hypothesisEquality multiplyEquality hypothesis dependent_pairFormation promote_hyp instantiate cumulativity independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination natural_numberEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}x,y,z:\mBbbZ{}.    (((x  |  y)  \mvee{}  (x  |  z))  {}\mRightarrow{}  (x  |  (y  *  z)))



Date html generated: 2016_05_14-PM-04_16_31
Last ObjectModification: 2016_01_14-PM-11_42_33

Theory : num_thy_1


Home Index