Nuprl Lemma : divides_product
∀x,y,z:ℤ.  (((x | y) ∨ (x | z)) 
⇒ (x | (y * z)))
Proof
Definitions occuring in Statement : 
divides: b | a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
divides: b | a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
int_subtype_base, 
subtype_base_sq, 
equal_wf, 
exists_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
productElimination, 
cut, 
lemma_by_obid, 
isectElimination, 
intEquality, 
lambdaEquality, 
hypothesisEquality, 
multiplyEquality, 
hypothesis, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
natural_numberEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}x,y,z:\mBbbZ{}.    (((x  |  y)  \mvee{}  (x  |  z))  {}\mRightarrow{}  (x  |  (y  *  z)))
Date html generated:
2016_05_14-PM-04_16_31
Last ObjectModification:
2016_01_14-PM-11_42_33
Theory : num_thy_1
Home
Index