Nuprl Lemma : exp-non-zero

[n:ℕ]. ∀[x:ℤ].  ¬(x^n 0 ∈ ℤsupposing ¬(x 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  exp: i^n nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False nat: ge: i ≥  and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top prop: uiff: uiff(P;Q) subtype_rel: A ⊆B
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf less_than_wf equal-wf-base exp-is-zero equal-wf-T-base not_wf exp_wf2 int_subtype_base nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename productElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll productEquality because_Cache baseClosed addLevel impliesFunctionality independent_functionElimination applyEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbZ{}].    \mneg{}(x\^{}n  =  0)  supposing  \mneg{}(x  =  0)



Date html generated: 2017_04_17-AM-09_45_11
Last ObjectModification: 2017_02_27-PM-05_39_57

Theory : num_thy_1


Home Index