Nuprl Lemma : exp-non-zero
∀[n:ℕ]. ∀[x:ℤ].  ¬(x^n = 0 ∈ ℤ) supposing ¬(x = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
exp: i^n
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
nat: ℕ
, 
ge: i ≥ j 
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
less_than_wf, 
equal-wf-base, 
exp-is-zero, 
equal-wf-T-base, 
not_wf, 
exp_wf2, 
int_subtype_base, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
productEquality, 
because_Cache, 
baseClosed, 
addLevel, 
impliesFunctionality, 
independent_functionElimination, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbZ{}].    \mneg{}(x\^{}n  =  0)  supposing  \mneg{}(x  =  0)
Date html generated:
2017_04_17-AM-09_45_11
Last ObjectModification:
2017_02_27-PM-05_39_57
Theory : num_thy_1
Home
Index