Nuprl Lemma : gcd_exists

a,b:ℤ.  ∃y:ℤGCD(a;b;y)


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) all: x:A. B[x] exists: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T decidable: Dec(P) or: P ∨ Q nat: uall: [x:A]. B[x] prop: exists: x:A. B[x] rev_implies:  Q iff: ⇐⇒ Q and: P ∧ Q implies:  Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top
Lemmas referenced :  decidable__le istype-int gcd_exists_n le_wf gcd_p_neg_arg_2 gcd_p_wf full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMinus_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_minus_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin natural_numberEquality hypothesisEquality hypothesis unionElimination Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt,  Error :universeIsType,  isectElimination productElimination Error :dependent_pairFormation_alt,  independent_functionElimination because_Cache minusEquality independent_isectElimination approximateComputation Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation

Latex:
\mforall{}a,b:\mBbbZ{}.    \mexists{}y:\mBbbZ{}.  GCD(a;b;y)



Date html generated: 2019_06_20-PM-02_22_17
Last ObjectModification: 2018_10_03-AM-00_12_24

Theory : num_thy_1


Home Index