Nuprl Lemma : gcd_exists_n
∀b:ℕ. ∀a:ℤ.  ∃y:ℤ. GCD(a;b;y)
Proof
Definitions occuring in Statement : 
gcd_p: GCD(a;b;y)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
less_than: a < b
, 
ge: i ≥ j 
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
subtract: n - m
Lemmas referenced : 
gcd_p_shift, 
add_com, 
gcd_p_sym, 
minus-zero, 
minus-add, 
add-commutes, 
condition-implies-le, 
le-add-cancel, 
zero-add, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
not-equal-2, 
not-lt-2, 
quot_rem_exists, 
gcd_p_zero, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
nat_properties, 
nat_wf, 
primrec-wf2, 
less_than_wf, 
set_wf, 
decidable__lt, 
gcd_p_wf, 
exists_wf, 
guard_wf, 
all_wf, 
le_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
intformeq_wf, 
itermSubtract_wf, 
intformnot_wf, 
decidable__le, 
lelt_wf, 
false_wf, 
int_seg_subtype, 
subtract_wf, 
decidable__equal_int, 
int_seg_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
unionElimination, 
addLevel, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
levelHypothesis, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
introduction, 
addEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_functionElimination, 
minusEquality, 
multiplyEquality
Latex:
\mforall{}b:\mBbbN{}.  \mforall{}a:\mBbbZ{}.    \mexists{}y:\mBbbZ{}.  GCD(a;b;y)
Date html generated:
2016_05_14-PM-04_19_03
Last ObjectModification:
2016_01_14-PM-11_41_14
Theory : num_thy_1
Home
Index