Nuprl Lemma : gcd_p_shift

a,b,y,k:ℤ.  (GCD(a;b;y)  GCD(a;b (k a);y))


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) all: x:A. B[x] implies:  Q multiply: m add: m int:
Definitions unfolded in proof :  gcd_p: GCD(a;b;y) all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T uall: [x:A]. B[x] prop: squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q top: Top
Lemmas referenced :  divides_wf istype-int divisor_of_sum squash_wf true_wf mul_com subtype_rel_self iff_weakening_equal divisor_of_mul istype-void add-associates minus-one-mul mul-commutes mul-swap add-commutes add-mul-special zero-mul add-zero
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  sqequalHypSubstitution productElimination thin cut hypothesis independent_pairFormation Error :productIsType,  Error :universeIsType,  introduction extract_by_obid isectElimination hypothesisEquality addEquality multiplyEquality Error :inhabitedIsType,  Error :functionIsType,  dependent_functionElimination independent_functionElimination applyEquality Error :lambdaEquality_alt,  imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination because_Cache minusEquality Error :isect_memberEquality_alt,  voidElimination

Latex:
\mforall{}a,b,y,k:\mBbbZ{}.    (GCD(a;b;y)  {}\mRightarrow{}  GCD(a;b  +  (k  *  a);y))



Date html generated: 2019_06_20-PM-02_21_46
Last ObjectModification: 2018_10_03-AM-00_12_07

Theory : num_thy_1


Home Index