Nuprl Lemma : only_pm_one_divs_one

b:ℤ((b 1)  = ± 1)


Proof




Definitions occuring in Statement :  divides: a pm_equal: = ± j all: x:A. B[x] implies:  Q natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat: prop: nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q uimplies: supposing a decidable: Dec(P) or: P ∨ Q ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top pm_equal: = ± j subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  divides_wf nat_wf istype-int divisors_bound less_than_wf decidable__equal_int zero_divs_only_zero nat_properties full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf decidable__le int_subtype_base le_wf itermMinus_wf int_term_value_minus_lemma divides_invar_1 minus-minus
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  hypothesis Error :universeIsType,  introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality natural_numberEquality Error :dependent_set_memberEquality_alt,  sqequalRule independent_pairFormation imageMemberEquality baseClosed independent_isectElimination dependent_functionElimination unionElimination equalitySymmetry hyp_replacement applyLambdaEquality equalityTransitivity because_Cache approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :inlFormation_alt,  Error :equalityIsType4,  Error :inhabitedIsType,  applyEquality minusEquality productElimination Error :inrFormation_alt

Latex:
\mforall{}b:\mBbbZ{}.  ((b  |  1)  {}\mRightarrow{}  b  =  \mpm{}  1)



Date html generated: 2019_06_20-PM-02_20_00
Last ObjectModification: 2018_10_03-AM-00_35_40

Theory : num_thy_1


Home Index