Nuprl Lemma : rem_mul2
∀[x,y:ℕ]. ∀[m:ℕ+].  ((x * y rem m) = ((x rem m) * y rem m) ∈ ℤ)
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
true: True
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
nat_plus_wf, 
istype-nat, 
remainder_wf, 
remainder_wfa, 
nat_plus_inc_int_nzero, 
equal_wf, 
rem_mul, 
iff_weakening_equal, 
rem_rem_to_rem
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
Error :isect_memberEquality_alt, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
intEquality, 
natural_numberEquality, 
because_Cache, 
multiplyEquality, 
setElimination, 
rename, 
applyEquality, 
Error :lambdaEquality_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[x,y:\mBbbN{}].  \mforall{}[m:\mBbbN{}\msupplus{}].    ((x  *  y  rem  m)  =  ((x  rem  m)  *  y  rem  m))
Date html generated:
2019_06_20-PM-02_32_06
Last ObjectModification:
2019_03_06-AM-10_53_44
Theory : num_thy_1
Home
Index