Nuprl Lemma : rem_mul2

[x,y:ℕ]. ∀[m:ℕ+].  ((x rem m) ((x rem m) rem m) ∈ ℤ)


Proof




Definitions occuring in Statement :  nat_plus: + nat: uall: [x:A]. B[x] remainder: rem m multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T true: True nat: subtype_rel: A ⊆B squash: T uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  nat_plus_wf istype-nat remainder_wf remainder_wfa nat_plus_inc_int_nzero equal_wf rem_mul iff_weakening_equal rem_rem_to_rem
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis Error :universeIsType,  extract_by_obid sqequalRule sqequalHypSubstitution Error :isect_memberEquality_alt,  isectElimination thin hypothesisEquality axiomEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  intEquality natural_numberEquality because_Cache multiplyEquality setElimination rename applyEquality Error :lambdaEquality_alt,  imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[x,y:\mBbbN{}].  \mforall{}[m:\mBbbN{}\msupplus{}].    ((x  *  y  rem  m)  =  ((x  rem  m)  *  y  rem  m))



Date html generated: 2019_06_20-PM-02_32_06
Last ObjectModification: 2019_03_06-AM-10_53_44

Theory : num_thy_1


Home Index