Nuprl Lemma : rem_rem_to_rem

[a:ℕ]. ∀[n:ℕ+].  ((a rem rem n) (a rem n) ∈ ℤ)


Proof




Definitions occuring in Statement :  nat_plus: + nat: uall: [x:A]. B[x] remainder: rem m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q nat: nat_plus: + nequal: a ≠ b ∈  ge: i ≥  not: ¬A implies:  Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top prop: subtype_rel: A ⊆B true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_plus_wf nat_wf remainder_wf rem_bounds_1 nat_plus_properties nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base equal_wf squash_wf true_wf rem_base_case subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache intEquality productElimination remainderEquality setElimination rename lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation applyEquality baseClosed imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality instantiate

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((a  rem  n  rem  n)  =  (a  rem  n))



Date html generated: 2019_06_20-PM-01_15_05
Last ObjectModification: 2018_09_17-PM-05_44_27

Theory : int_2


Home Index