Nuprl Lemma : rem_mul

[x,y:ℕ]. ∀[m:ℕ+].  ((x rem m) ((x rem m) (y rem m) rem m) ∈ ℤ)


Proof




Definitions occuring in Statement :  nat_plus: + nat: uall: [x:A]. B[x] remainder: rem m multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: subtype_rel: A ⊆B true: True top: Top nat_plus: + squash: T uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False uiff: uiff(P;Q) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop:
Lemmas referenced :  div_rem_sum nat_plus_inc_int_nzero nat_plus_wf istype-nat remainder_wfa istype-void divide_wfa equal_wf iff_weakening_equal mul-distributes mul-distributes-right mul-associates add-associates mul-swap mul-commutes add-swap add-commutes rem_invariant mul_bounds_1a remainder_wf istype-le add_nat_wf multiply_nat_wf divide_wf nat_plus_subtype_nat nat_properties nat_plus_properties decidable__le add-is-int-iff multiply-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf itermMultiply_wf intformeq_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis applyEquality sqequalRule Error :universeIsType,  Error :isect_memberEquality_alt,  axiomEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  intEquality because_Cache natural_numberEquality multiplyEquality equalityTransitivity equalitySymmetry voidElimination Error :lambdaEquality_alt,  imageElimination imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination Error :dependent_set_memberEquality_alt,  addEquality Error :lambdaFormation_alt,  applyLambdaEquality dependent_functionElimination unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality independent_pairFormation Error :equalityIstype

Latex:
\mforall{}[x,y:\mBbbN{}].  \mforall{}[m:\mBbbN{}\msupplus{}].    ((x  *  y  rem  m)  =  ((x  rem  m)  *  (y  rem  m)  rem  m))



Date html generated: 2019_06_20-PM-02_32_01
Last ObjectModification: 2019_03_06-AM-10_53_18

Theory : num_thy_1


Home Index