Nuprl Lemma : rem_mul
∀[x,y:ℕ]. ∀[m:ℕ+].  ((x * y rem m) = ((x rem m) * (y rem m) rem m) ∈ ℤ)
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
true: True
, 
top: Top
, 
nat_plus: ℕ+
, 
squash: ↓T
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
div_rem_sum, 
nat_plus_inc_int_nzero, 
nat_plus_wf, 
istype-nat, 
remainder_wfa, 
istype-void, 
divide_wfa, 
equal_wf, 
iff_weakening_equal, 
mul-distributes, 
mul-distributes-right, 
mul-associates, 
add-associates, 
mul-swap, 
mul-commutes, 
add-swap, 
add-commutes, 
rem_invariant, 
mul_bounds_1a, 
remainder_wf, 
istype-le, 
add_nat_wf, 
multiply_nat_wf, 
divide_wf, 
nat_plus_subtype_nat, 
nat_properties, 
nat_plus_properties, 
decidable__le, 
add-is-int-iff, 
multiply-is-int-iff, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMultiply_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
Error :universeIsType, 
Error :isect_memberEquality_alt, 
axiomEquality, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
intEquality, 
because_Cache, 
natural_numberEquality, 
multiplyEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
Error :lambdaEquality_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
Error :lambdaFormation_alt, 
applyLambdaEquality, 
dependent_functionElimination, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
Error :equalityIstype
Latex:
\mforall{}[x,y:\mBbbN{}].  \mforall{}[m:\mBbbN{}\msupplus{}].    ((x  *  y  rem  m)  =  ((x  rem  m)  *  (y  rem  m)  rem  m))
Date html generated:
2019_06_20-PM-02_32_01
Last ObjectModification:
2019_03_06-AM-10_53_18
Theory : num_thy_1
Home
Index