Nuprl Lemma : equiv_int_terms_inversion

[t1,t2:int_term()].  t1 ≡ t2 supposing t2 ≡ t1


Proof




Definitions occuring in Statement :  equiv_int_terms: t1 ≡ t2 int_term: int_term() uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a equiv_int_terms: t1 ≡ t2 all: x:A. B[x] squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf int_term_value_wf iff_weakening_equal equiv_int_terms_wf int_term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation applyEquality thin lambdaEquality imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality intEquality dependent_functionElimination functionExtensionality because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination functionEquality axiomEquality isect_memberEquality

Latex:
\mforall{}[t1,t2:int\_term()].    t1  \mequiv{}  t2  supposing  t2  \mequiv{}  t1



Date html generated: 2017_04_14-AM-08_57_32
Last ObjectModification: 2017_02_27-PM-03_40_44

Theory : omega


Home Index