Nuprl Lemma : ml-accum-abort_wf
∀[A,B:Type]. ∀[s:B?]. ∀[F:A ⟶ B ⟶ (B?)]. ∀[L:A List].
  ml-accum-abort(F;s;L) ∈ B? supposing valueall-type(A) ∧ valueall-type(B) ∧ A ∧ B
Proof
Definitions occuring in Statement : 
ml-accum-abort: ml-accum-abort(f;sofar;L)
, 
list: T List
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
Lemmas referenced : 
ml-accum-abort-sq, 
accumulate_abort_wf, 
valueall-type_wf, 
list_wf, 
unit_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
independent_pairFormation, 
cumulativity, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
unionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[s:B?].  \mforall{}[F:A  {}\mrightarrow{}  B  {}\mrightarrow{}  (B?)].  \mforall{}[L:A  List].
    ml-accum-abort(F;s;L)  \mmember{}  B?  supposing  valueall-type(A)  \mwedge{}  valueall-type(B)  \mwedge{}  A  \mwedge{}  B
Date html generated:
2017_09_29-PM-05_57_16
Last ObjectModification:
2017_05_21-PM-04_50_07
Theory : omega
Home
Index