Nuprl Lemma : ml-accum-abort_wf

[A,B:Type]. ∀[s:B?]. ∀[F:A ⟶ B ⟶ (B?)]. ∀[L:A List].
  ml-accum-abort(F;s;L) ∈ B? supposing valueall-type(A) ∧ valueall-type(B) ∧ A ∧ B


Proof




Definitions occuring in Statement :  ml-accum-abort: ml-accum-abort(f;sofar;L) list: List valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop:
Lemmas referenced :  ml-accum-abort-sq accumulate_abort_wf valueall-type_wf list_wf unit_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule extract_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis independent_pairFormation cumulativity lambdaEquality applyEquality functionExtensionality axiomEquality equalityTransitivity equalitySymmetry productEquality isect_memberEquality because_Cache functionEquality unionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[s:B?].  \mforall{}[F:A  {}\mrightarrow{}  B  {}\mrightarrow{}  (B?)].  \mforall{}[L:A  List].
    ml-accum-abort(F;s;L)  \mmember{}  B?  supposing  valueall-type(A)  \mwedge{}  valueall-type(B)  \mwedge{}  A  \mwedge{}  B



Date html generated: 2017_09_29-PM-05_57_16
Last ObjectModification: 2017_05_21-PM-04_50_07

Theory : omega


Home Index