Nuprl Lemma : ml-accum-abort-sq
∀[A,B:Type]. ∀[F:A ⟶ B ⟶ (B?)].
  ∀[L:A List]. ∀[s:B?].  (ml-accum-abort(F;s;L) ~ accumulate_abort(x,sofar.F x sofar;s;L)) 
  supposing valueall-type(A) ∧ valueall-type(B) ∧ A ∧ B
Proof
Definitions occuring in Statement : 
ml-accum-abort: ml-accum-abort(f;sofar;L)
, 
accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L)
, 
list: T List
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
or: P ∨ Q
, 
ml-accum-abort: ml-accum-abort(f;sofar;L)
, 
unit: Unit
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cons: [a / b]
, 
colength: colength(L)
, 
decidable: Dec(P)
, 
nil: []
, 
it: ⋅
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
bor: p ∨bq
, 
bfalse: ff
, 
spreadcons: spreadcons, 
isr: isr(x)
, 
outl: outl(x)
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
unit_wf2, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
less_than_transitivity1, 
less_than_irreflexivity, 
list-cases, 
ml_apply-sq, 
list_wf, 
nil_wf, 
list-valueall-type, 
void-valueall-type, 
union-valueall-type, 
equal-valueall-type, 
function-valueall-type, 
function-value-type, 
union-value-type, 
accumulate_abort_nil_lemma, 
null_nil_lemma, 
testxxx_lemma, 
product_subtype_list, 
spread_cons_lemma, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
le_wf, 
equal_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_int, 
cons_wf, 
accumulate_abort_cons_lemma, 
null_cons_lemma, 
valueall-type_wf, 
valueall-type-has-valueall, 
evalall-reduce, 
ml_apply_wf, 
accumulate_abort-aborted, 
subtype_rel_list, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
unionEquality, 
cumulativity, 
productElimination, 
applyEquality, 
because_Cache, 
unionElimination, 
functionEquality, 
imageMemberEquality, 
baseClosed, 
promote_hyp, 
hypothesis_subsumption, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_set_memberEquality, 
addEquality, 
instantiate, 
imageElimination, 
productEquality, 
universeEquality, 
functionExtensionality, 
callbyvalueReduce, 
inrEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[F:A  {}\mrightarrow{}  B  {}\mrightarrow{}  (B?)].
    \mforall{}[L:A  List].  \mforall{}[s:B?].    (ml-accum-abort(F;s;L)  \msim{}  accumulate\_abort(x,sofar.F  x  sofar;s;L)) 
    supposing  valueall-type(A)  \mwedge{}  valueall-type(B)  \mwedge{}  A  \mwedge{}  B
Date html generated:
2017_09_29-PM-05_57_12
Last ObjectModification:
2017_05_21-PM-04_48_42
Theory : omega
Home
Index