Nuprl Lemma : ml-accum-abort-sq

[A,B:Type]. ∀[F:A ⟶ B ⟶ (B?)].
  ∀[L:A List]. ∀[s:B?].  (ml-accum-abort(F;s;L) accumulate_abort(x,sofar.F sofar;s;L)) 
  supposing valueall-type(A) ∧ valueall-type(B) ∧ A ∧ B


Proof




Definitions occuring in Statement :  ml-accum-abort: ml-accum-abort(f;sofar;L) accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L) list: List valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] union: left right universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q ml-accum-abort: ml-accum-abort(f;sofar;L) unit: Unit so_lambda: λ2x.t[x] so_apply: x[s] squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] ifthenelse: if then else fi  btrue: tt cons: [a b] colength: colength(L) decidable: Dec(P) nil: [] it: sq_type: SQType(T) less_than: a < b less_than': less_than'(a;b) bor: p ∨bq bfalse: ff spreadcons: spreadcons isr: isr(x) outl: outl(x) callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf unit_wf2 equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases ml_apply-sq list_wf nil_wf list-valueall-type void-valueall-type union-valueall-type equal-valueall-type function-valueall-type function-value-type union-value-type accumulate_abort_nil_lemma null_nil_lemma testxxx_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int cons_wf accumulate_abort_cons_lemma null_cons_lemma valueall-type_wf valueall-type-has-valueall evalall-reduce ml_apply_wf accumulate_abort-aborted subtype_rel_list top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom unionEquality cumulativity productElimination applyEquality because_Cache unionElimination functionEquality imageMemberEquality baseClosed promote_hyp hypothesis_subsumption equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality instantiate imageElimination productEquality universeEquality functionExtensionality callbyvalueReduce inrEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[F:A  {}\mrightarrow{}  B  {}\mrightarrow{}  (B?)].
    \mforall{}[L:A  List].  \mforall{}[s:B?].    (ml-accum-abort(F;s;L)  \msim{}  accumulate\_abort(x,sofar.F  x  sofar;s;L)) 
    supposing  valueall-type(A)  \mwedge{}  valueall-type(B)  \mwedge{}  A  \mwedge{}  B



Date html generated: 2017_09_29-PM-05_57_12
Last ObjectModification: 2017_05_21-PM-04_48_42

Theory : omega


Home Index