Nuprl Lemma : test-omega
∀x,y,z:ℤ.  ((1 ≤ ((2 * x) + (2 * y))) 
⇒ ((2 * x) ≤ ((2 * y) + 1)) 
⇒ (2 ≤ (3 * y)))
Proof
Definitions occuring in Statement : 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
natural_numberEquality, 
multiplyEquality, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
isectElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
addEquality
Latex:
\mforall{}x,y,z:\mBbbZ{}.    ((1  \mleq{}  ((2  *  x)  +  (2  *  y)))  {}\mRightarrow{}  ((2  *  x)  \mleq{}  ((2  *  y)  +  1))  {}\mRightarrow{}  (2  \mleq{}  (3  *  y)))
Date html generated:
2017_09_29-PM-05_56_30
Last ObjectModification:
2017_06_01-PM-01_27_20
Theory : omega
Home
Index