Nuprl Lemma : test-omega

x,y,z:ℤ.  ((1 ≤ ((2 x) (2 y)))  ((2 x) ≤ ((2 y) 1))  (2 ≤ (3 y)))


Proof




Definitions occuring in Statement :  le: A ≤ B all: x:A. B[x] implies:  Q multiply: m add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop:
Lemmas referenced :  decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMultiply_wf itermVar_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin natural_numberEquality multiplyEquality hypothesisEquality hypothesis unionElimination isectElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation addEquality

Latex:
\mforall{}x,y,z:\mBbbZ{}.    ((1  \mleq{}  ((2  *  x)  +  (2  *  y)))  {}\mRightarrow{}  ((2  *  x)  \mleq{}  ((2  *  y)  +  1))  {}\mRightarrow{}  (2  \mleq{}  (3  *  y)))



Date html generated: 2017_09_29-PM-05_56_30
Last ObjectModification: 2017_06_01-PM-01_27_20

Theory : omega


Home Index