Nuprl Lemma : member-per-union-right
∀[A,B:Type]. ∀[x:B].  (inr x  ∈ per-union(A;B))
Proof
Definitions occuring in Statement : 
per-union: per-union(A;B)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
inr: inr x 
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
per-union: per-union(A;B)
, 
has-value: (a)↓
, 
outr: outr(x)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
true: True
, 
uand: uand(A;B)
, 
top: Top
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
per-union_wf, 
has-value_wf_base, 
is-exception_wf, 
uand_wf, 
sqle_wf_base, 
top_wf, 
base_wf, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
pointwiseFunctionality, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache, 
universeEquality, 
extract_by_obid, 
axiomSqleEquality, 
divergentSqle, 
sqleReflexivity, 
baseClosed, 
baseApply, 
closedConclusion, 
pertypeMemberEquality, 
natural_numberEquality, 
rename, 
isaxiomCases, 
axiomSqEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
instantiate
Latex:
\mforall{}[A,B:Type].  \mforall{}[x:B].    (inr  x    \mmember{}  per-union(A;B))
Date html generated:
2019_06_20-AM-11_30_54
Last ObjectModification:
2018_08_01-PM-05_11_41
Theory : per!type
Home
Index