Nuprl Lemma : no-excluded-middle-quot-true2
¬(∀P:ℙ. ⇃(P ∨ (¬P)))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
, 
true: True
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
has-value: (a)↓
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
true: True
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
bottom-sqle, 
not_id_sqeq_bottom, 
equal-wf-base, 
equal_wf, 
false_wf, 
sqle_wf_base, 
not_wf, 
equiv_rel_true, 
true_wf, 
quotient_wf, 
or_wf, 
or-quotient-true-subtype, 
is-exception_wf, 
has-value_wf_base, 
exception-not-bottom, 
bottom_diverge
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
rename, 
cut, 
sqleRule, 
sqleReflexivity, 
divergentSqle, 
lemma_by_obid, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
hypothesis, 
voidElimination, 
isectElimination, 
baseClosed, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
dependent_functionElimination, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
unionElimination, 
introduction, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
productEquality, 
sqequalSqle, 
isect_memberEquality, 
voidEquality, 
instantiate, 
universeEquality, 
cumulativity
Latex:
\mneg{}(\mforall{}P:\mBbbP{}.  \00D9(P  \mvee{}  (\mneg{}P)))
Date html generated:
2016_05_14-AM-06_09_03
Last ObjectModification:
2016_01_14-PM-07_33_22
Theory : quot_1
Home
Index