Nuprl Lemma : no-excluded-middle-quot-true2

¬(∀P:ℙ. ⇃(P ∨ P)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] prop: all: x:A. B[x] not: ¬A or: P ∨ Q true: True
Definitions unfolded in proof :  not: ¬A implies:  Q false: False member: t ∈ T uall: [x:A]. B[x] has-value: (a)↓ all: x:A. B[x] subtype_rel: A ⊆B prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a or: P ∨ Q quotient: x,y:A//B[x; y] and: P ∧ Q true: True top: Top so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf bottom-sqle not_id_sqeq_bottom equal-wf-base equal_wf false_wf sqle_wf_base not_wf equiv_rel_true true_wf quotient_wf or_wf or-quotient-true-subtype is-exception_wf has-value_wf_base exception-not-bottom bottom_diverge
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation rename cut sqleRule sqleReflexivity divergentSqle lemma_by_obid sqequalHypSubstitution independent_functionElimination thin hypothesis voidElimination isectElimination baseClosed sqequalRule applyEquality hypothesisEquality dependent_functionElimination lambdaEquality because_Cache independent_isectElimination unionElimination introduction pointwiseFunctionalityForEquality pertypeElimination productElimination equalityTransitivity equalitySymmetry natural_numberEquality productEquality sqequalSqle isect_memberEquality voidEquality instantiate universeEquality cumulativity

Latex:
\mneg{}(\mforall{}P:\mBbbP{}.  \00D9(P  \mvee{}  (\mneg{}P)))



Date html generated: 2016_05_14-AM-06_09_03
Last ObjectModification: 2016_01_14-PM-07_33_22

Theory : quot_1


Home Index